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Abstract

The paper presents the performance analysis process within
the parallelizing compilation environment CoDe-X for
simultaneous programming of Xputer-based accelerators and
their host. The paper introduces briefly its hardware/software
co-design strategies at two levels of partitioning. CoDe-X
performs both, at first level a profiling-driven host/accelerator
partitioning for performance optimization, and at second level a
resource-driven  sequential/structural partitioning of the
accelerator source code to optimize the wtilization of its
reconfigurable resources. The analysis of candidate (task)
performances in CoDe-X has to be done for both, a procedural
(sequential) programmable host processor, and the structural
programmable data-driven accelerator processor. In complete
application time estimation data-dependencies for parallel task
execution (host/accelerators) are considered. To stress the
significance of this application development methodology, the
paper first gives an introduction to the target hardware platform.

1. Introduction

Due to the emerging development of field-programmable
logic (FPL) devices in the last years hardware has become soft.
Thus, emanating from this technology the new paradigm of
structural programming has evolved. So, now two programming
paradigms are available: programming in time and programming
in space. It is time to become aware of the really existing two
kinds of software:

e procedural software (code downloaded to RAM)

e structural software (downloaded to hidden RAM)

Tools like XACT etc. are the code generators for structural
software. The R&D area of Custom Computing Machines
(CCMs: [1], {21, [3]), such as FPGA-based CCMs (FCCMs [4]
[51), merge both kinds of software to an integrated methodology
to speed-up performance. We have obtained a dual software-
only implementation: procedural software running on the host,
together with structural software running on reconfigurable
accelerators. Implementing CCMs has a lot in common with
hardware/software co-design to optimize hardware/software
trade-off and to reduce total design time [6], [7]. The main
difference is the target platform: the structural program is frozen
into ASICs or other hardware structures. Instead of structural
programming this is called hardware synthesis.

But currently structural programming usually requires
hardware experts, since contemporary FPGA-based accelerator
architectures are far from being general purpose platforms
having several severe draw-backs:

® by far too area-inefficient

@ designed for random logic only
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@ too fine grain and too slow
® poor cost/performance ratio for highly
computing-intensive (arithmetic) applications

The problem is the wide variety of architectures urged by
optimization needs which stem from these draw-backs. Neither
in CCMs nor in hardware/software co-design a common model
is available. The von Neumann paradigm does not efficiently
support “’soft” hardware because of its tight coupling between
instruction sequencer and ALU [8]. You need a new instruction
sequencer, as soon as the data path is changed by structural
programming: the architecture falls apart. Thus, a new kind of
structurally programmable technology platform is needed. But
also a new paradigm is needed like the one of Xputers [13],
which conveniently supports soft ALUs like in the rALU Array
concept (reconfigurable ALU Array) [9]. Such data-driven
Xputer-based accelerators can be integrated as co-processors
into state-of-the-art workstations (section2) for executing
appropriate computation-intensive parts of applications. To
evaluate hardware/software trade-offs for this target hardware to
optimize the complete application execution time, an extensive
performance analysis of the input specification is necessary.

The paper is organized as follows: in section 2 structural
programmable Xputer-based accelerators are introduced,
section 3 gives a brief overview on the CoDe-X framework and
focuses on its performance evaluation process. Finally, some
experimental results are given in section 4.

2. Xputer-based Accelerators

The Xputer machine paradigm has been introduced and
discussed elsewhere [8] [11] [12]. Xputers use one or more data
sequencers — in contrast to (von Neumann) Computers, which
use an instruction sequencer. To support highly computing-
intensive applications we need structurally programmable
platforms providing word level parallelism instead of the bit
level parallelism of FPGAs. We need FPAAs (field-
programmable ALU Arrays) instead of FPGAs. A good solution
is the Kress Array (see figure 1). It permits to map highly
irregular applications onto a regularly structured hardware
platform. A subset of the C language is mappable onto the Kress
Array by the DPSS (Data Path Synthesis System [9], [10])
subsystem of the CoDe-X framework. The result of this
structural programming effort is the configured data path within
the Kress ALU Array . The DPSS is a simulated annealing
optimizer, which carries out placement and routing [10] of the
mapped operations. For more details about the Kress Array
(originally called rDPA, reconfigurable Data Path Array) and its
instruction level parallelism please see [10], and for the DPSS
integration within CoDe-X see [14] [20].

Being procedurally data-driven, the Xputer paradigm is well
suited to cooperate with the data-driven Kress Array [14]. The
current prototype MoM-III [15] is an Xputer architecture, which
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Figure 1. Host with several Xputer modules

consists of several (up to seven) modules (figure 1), connected to
a host computer. Making use of the host simplifies disk access
and all other I/O operations. After setup, each module runs
independently from the others and the host computer until a
complete task is processed, and generates an interrupt to the host
when the task is finished. So, the host is free to concurrently
execute other tasks in-between. This allows the use of modules as
general purpose acceleration boards for time critical parts in an
application. A module consists of three major parts {15]:

@ primary memory

& reconfigurable Kress ALU Array

® (multiple) generic address generators (GAGs)

A major advantage of the Kress Array is its flexibility, so that
also the GAG data paths can be mapped onto ([16], figure 1).
So only one major chip design is needed for an Xputer.

Many applications require iterating the same data
manipulations on a Jarge amount of data, e.g. statement blocks in
nested loops. The Xputer machine paradigm accelerates such
applications. Xputers are especially designed to reduce the von
Neumann bottleneck of repetitive decoding and interpreting
address and data computations. High performance
improvements have been achieved for the class of regular,
scientific computations [8], [11], [14].

In such an environment the parallelizing co-design framework
CoDe-X requires two levels of partitioning: host/accelerator
partitioning (first level) for optimizing performance, and a
structural/sequential partitioning (second level) for optimizing
the hardware/software trade-off of Xputer resources.
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Furthermore, CoDe-X combines three programming paradigms
into one more powerful approach: the control procedural
paradigm reflected in C language features, the data-procedural
paradigm realized in an optional language extension for
specifying selected data-procedural application parts executed
faster by Xputer hardware [14] [18], and the structural
programming paradigm for the reconfigurable Xputer hardware
components. Section 3 gives first a brief overview on CoDe-X,
and explains afterwards more detailed its performance analysis
process for exploring the design space.

3. Performance Analysis in the Dual
Co-Design Framework CoDe-X

For the above hardware platform the parallelizing co-design
framework CoDe-X is being implemented which accepts X-C
source programs (figure 2). X-C (Xputer-C) is a C extension,
including also an optional data procedural language extension
[14] [18]. CoDe-X consists of a 1 level partitioner, a GNU C
compiler, and an X-C compiler (figure 2). The X-C source input
is partitioned in a first level into a part for execution on the host
(host tasks, also permitting dynamic structures and operating
system calls) and a part for execution on the Xputer (Xputer
tasks). Parts for Xputer execution are expressed in a X-C subset,
which lacks only dynamic structures and has some restrictions in
the index expressions of array variable subscripts [17]. At second
level this input is partitioned by the X-C compiler in a sequential
part for the GAGs, and a structural part for the Kress Array
(figure 1, figure 2). Additionally, generic data procedural library
functions can be used as C functions within X-C source
programs [14], or experienced users may include directly MoPL-
code (Map-oriented Programming Language [18]) into the X-C
input specification to take full advantage of the high acceleration
factors possible by the Xputer paradigm (figure 2).

The first level of the CoDe-X partitioning process is
responsible for the decision which tasks should be evaluated on
the Xputer-based accelerators and which one on the host.
Generally four kinds of tasks can be determined:

@ host tasks which contain dynamic structures
o Xputer tasks (candidates for Xputer execution),
o Xputer library functions, and

® MoPL-code segments included in X-C source.

The host tasks have to be evaluated on the host, since they
cannot be performed on Xputer-based accelerators. The Xputer
library functions and included MoPL~code segments are
executed in any case on the Xputer. Thus only their Xputer
performance is evaluated, whereas for library functions a list of
their performance values is available, and the execution times of
MoPL-code segments is determined in using MoPL compiler
and DPSS outputs (see equations (2) and (3)). All other tasks are
Xputer tasks, which are the candidates for the first level
partitioning process. Due to the program’s data dependencies,
different possible code optimizations (strip mining, loop
fusion, loop splitting, loop unrolling [19]) are applied to these
tasks {14] [21], and (incl. optimized versions) a performance
analysis for host and Xputer execution is done for them. More
details about code optimization and partitioning techniques in
CoDe-X can be found in [14] [16] [20] [21]. The paper explains
in the following the performance analysis process in the first level
host/accelerator partitioner.

The performance values for Xputer execution are determined
in using output files from the X-C compiler and the DPSS.
During GAG code generation the X-C compiler (figure 2) writes
the information how often one compound operator (corresponds
to one Kress Array activation) is iterated by one scan pattern into
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Figure 2. Overview on the CoDe-X Framework

a file. The execution time of such a compound operator (e.g., a
loop body within an Xputer task) mapped onto the Kress Array
(see section 2) is determined from DPSS generated scheduling
diagrams. Such diagrams represent the scheduling of operations
inside the loop body and the /O scheduling of their operands
during one Kress Array activation (black parts within plotted
example in figured). The /O scheduling determines an
optimized sequence of I/O operations through the external bus
connecting data memory and Kress Array (see figure 1) and the
internal on-chip rDPA bus, so that the pipelined parallelism of
operations during one Kress Array activation is maximized. For
more details about this data scheduling see [9] [10]. From such
scheduling diagrams the total number of cycles for one
activation can be derived. Thus, the Kress Array activation time

!arrayac: Can be computed according to equation (2):
1
t = cycle,, -——"— (eq.2)
A Act nu
rray ™ clockg,,,
whereas:

- eycle,,,, : total number of cycles for one Kress Array
activation, derived from scheduling diagrams.

- clocky,,, : clock frequency of Xputer prototype.
The complete Xputer task execution time ¢,,, is then
computed by equation (3) (incl. I/O of operands):
lexe = NUM A aypct tArrayAct (eq.3)
whereas:
- numy, . 4., : number of Kress Array activations during

one scan pattern execution.
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The performance values for host execution are estimated by
examining and/or profiling the source code of each Xputer task
candidate. Therefore three different performance tools for
sequential processors are integrated into CoDe-X, which can be
optionally selected for host performance evaluation:

e the i)erformance anaylsis tool CINDERELLA,
developed by Sharad Malik and others [25] [26].

e the program eroﬁling and tracing tools called
“Wisconsin chitectural Research Tool Set”
(WARTS) by James Larus and others [27] [28].

o the program execution time estimator KUKLFLAP [29]
[31f(used in CASTLE co-design system [31] [32]).

Malik’s tool CINDERELLA is determining a tight bound on
a program’s best case and worst case excution times (BCET and
WCET). The tool performs a static analysis of the program’s
executable code, models the instruction cache memory, and
computes the bound through the use of Integer Linear
Programming. During the analysis, the user can provide
additional path information so as to tighten the bound. For more
details see [25] [26]. For each processor type and workstation,
another model is required. The behavior of the underlying
hardware and operating system has to be deterministic and
known, This implies the timing behavior of all hardware
components, the effects of caching, pipelining, etc. The operating
system must provide static memory management, system calls
should have a calculable timing behavior, and no asynchronous
interrupts should be allowed [24].

The profiler QPT within the WARTS tool set rewrites a
program’s executable file by inserting code to record the
execution frequency or sequence of every basic block or control-
flow edge. From this information the execution costs of
procedures in the program can be calculated by considering the
execution time of each intsruction [27] [28].

The process of performance estimation in the program
execution time estimator KUKLFLAP consists of two steps:
o measuring execution frequencies of C instructions
(profiling results)
e determining program execution time by using these
profiling results
The first step is instrumenting the Control/Data Flow Graph
(by placing frequency counters at loops, ifs, calls, etc.) Thus not
the concrete execution path will be stored, but the frequency sums
of different program parts. These sums depend on the input data
and are stored as compact profile data, whereas the measured
counter values are matching the source code easily. The second
step is determining the program’s execution time. Therefore
KUKLFPLAP reads tables of different processor operation costs
as well as the measured profiling results, and calculates finally for
all availabe processors separately the execution times [31] {32].

An application is represented by a task graph, on which a data
dependency analysis based on the GCD-test [33] is carried out.
Thus tasks which can be evaluated in parallel can be found. After
deriving the host and Xputer performance values of all tasks (incl.
code optimized task versions) the overall execution time £, ..
(equation (4)) of an application using the Xputer as accelerator
has to be computed. The time f,.. includes delays for
synchronization, possible reconfigurations as well as memory
(re-) mappings during run time, and considers concurrent host/
Xputer task executions. Tasks finally allocated to an Xputer-
based accelerator are inputs for the X-C compiler realizing the
2 Jevel of partitioning in CoDe-X. It performs a paradigm
shift from control-procedural von Neumann to data-procedural
Xputer, and translates an input task into (possibly vectorized)



code which can be executed on the Xputer (see figure 2). For
more details about the X-C compiler see [9], [17].

tacc= Z texei+ Z toxe .t Z e

4
i€ HT jext J jexT (eq-4)

‘mem . * 2 syn
je XT J VYXputerCalis

whereas:

-3
j€ XT

ov

l,e -sumof task’s execution times on the host (HT).
ie HT
Y fore, :sumof task’s execution times on the Xputer (XT).
4
je XT

2 b

: sum of delays for reconfiguration during run time.

je XT
2 tpem, - Sumof delays for Xputer data map (re-) mappings
jexr ! during run time (communication overhead).

t, - sum of delays for host/Xputer synchronization.
VXputerCalls

2 oy

VXT

: sum of overlapping execution times
between concurrently executed tasks.

The delays for run time reconfigurations depends on task’s
configuration code size, and if partly reconfiguration of the
Kress Array can be performed while other parts of the array are
active. The times for data sequencer reconfigurations correspond
to the re-loading of registers controlling the scan pattern
generation, which can be nearly neglected [9] [10].

Memory (re-)mappings are necessary, when two tasks use the
same data (data dependent), and the actual data values have to be
written into the correct data map locations before starting the
dependent task. Therefore, sometimes a different distribution of
the data within the two-dimensionally organized memory (re-
mapping) is necessary. Thus, the considered delays depend on
the sizes of (re-) mapped data portions. For further details of
datamap re-organization during first level partitioning see [23].

The Xputer Run-Time System (XRTS) [22] provides the
software-interface from the host to Xputer-based accelerators,
and can be started interactively or inside a host’s process. The
main purpose of this system is scheduling, controlling and
synchronizing applications executed on the accelerator. The
corresponding sum of run time delays depends on the number
of XRTS activations.

If tasks are not data dependent, they can be executed
concurrently, resulting in overlapping task execution time
intervals. For each task an ASAP- and ALLAP schedule point is
computed (relatively to their code positions in the main
program), which dependent on their data dependencies. This
information and the simulated annealing-based task allocation
[20} [21]determines the task scheduling, from which these
overlapping execution time intervals can be derived.

The value of ¢, (equation (5)) is used as cost function in
each step of the simulated annealing process [20] [21] and has to
be optimized during different task partitionings in varying their
allocation between host and Xputer-based accelerators.

In the next section some experimental results are given by
illustrating the performance evaluation process of tasks executed
onto the Xputer, in viewing an edge detection algorithm.

4. Example: Experimental Results
Edge detection techniques are used primarily as enhancement
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tools for highlighting edges in an image [34]. Digital filtering
with appropriate coefficients is a straightforward spatial-domain
technique for edge detection. Given an N x N image p (x,y),an
by m coefficient-matrix h(i,j). The edge detected image g (x,y),
is obtained by using equation (5) below, which performs a 2-
dimensional non-recursive filter operation [34}:

Yiy): q(xy) = fb 2 pix+i,y+ht, ) (€q.5)
i=0=0

The X-C program of this small example was divided first into
four tasks. Two of them were filtered out for being executed on
the host in any case. These were tasks containing I/O routines for
reading input parameters and routines for plotting the image,
which cannot be executed on the Xputer. The remaining two
tasks were potential candidates for mapping onto the Xputer
(Xputer tasks). In one of these two tasks (nested loop of level 4)
loop unrolling was applied by CoDe-X’ 1% level partitioner up to
the limit of available hardware resources (here Kress Array),
resulting in a shorter loop execution time. Additionally, the
DPSS is performing different optimizations (loop folding,
pipelining in vectorized code etc.) during mapping the task’s
loop body onto the Kress Array [9] [10]. In the following this
task (task 0) is taken for illustrating the performance estimation
process for Xputer- and host execution. First, the execution time
of one Kress Armray activation can be derived from DPSS
generated scheduling diagrams (for task 0 see figure 4), as
explained in section 3. From this scheduling diagram 345 is the
derived number of cycles for one Kress Array activation of task
0.Thus, according to the formula in equation (2), the execution
tirne for one array activation is 10.5 ps (33 MHz clock frequency
assumed). Second, as mentioned in section 3, the number of
Kress Armray activations can be derived from X-C compiler
generated GAG code (see figure2), which is for task 0
(996*996), corresponding to the index range of the two outer
loops (two inner foops are unrolled). This results in a complete
task execution time of 10.42 sec. for task O.

The measured host performance values of task 0 (for SPARC
10/51) have been approximately 33 sec. by profiler QPT within
the WARTS tool set, as well as by KUKLFLAP
(CINDERELLA was not used here, because the new processor
dependent back-end for SPARC 10/51 was not instailed
completely). Thus, Xputer execution of this task would result in
a speed-up of 3. If strip mining would be additionally applied to
task 0 (dividing the image into stripes, which can be
manupulated concurrently on different Xputer-based accelerator
modules [20] [21]), the speed-up can be increased by a factor 5.

5. Conclusions

The two-level partitioning hardware/software co-design
framework CoDe-X and a powerful general purpose
reconfigurable hardware platform for software-only accelerator

Edge

Detection

Figure 3. Example of applying edge detection
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Figure 4, Scheduling diagram of task 0 incl. loop folding

implementation of highly computation-intensive applications
have been introduced briefly. The reconfigurable Kress ALU
array and the Xputer machine paradigm have been summarized.

CoDe-X accepts C language source programs, and generates
sequential code for the host, as well as structural code, data
schedules and storage schemes for Xputer-based accelerators. To
guide the host/accelerator partitioning process, an extensive task
performance evaluation for host and Xputer execution is
necessary. Therefore three profiling and performance estimation
tools for sequential processors (integrated in CoDe-X) have been
sketched briefly. Moreover, the process of task’s performance
determination for Xputer execution was explained. The obtained
task performance values are precise, because for Xputer
execution many information must be available at compile time
(loop bounds etc.). Additionally, the paper explained the overall
execution time estimation of multi-task applications (cost
function, to be optimized during partitioning), which has to
consider reconfiguration-, communication-, and
synchronization-overhead during run time, as well as concurrent
task execution of data independent tasks on host and Xputer-
based accelerators. Some experimental results were given by
analyzing a single task’s performance evaluation process for an
edge detection algorithm and its Xputer acceleration factors in
comparison to a workstation-only version.
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